Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EJNMMI Res ; 14(1): 25, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446249

RESUMO

BACKGROUND: P2X7 receptor has emerged as a potentially superior PET imaging marker to TSPO, the gold standard for imaging glial reactivity. [11C]SMW139 is the most recently developed radiotracer to image P2X7 receptor. The aim of this study was to image reactive glia in the APP/PS1-21 transgenic (TG) mouse model of Aß deposition longitudinally using [11C]SMW139 targeting P2X7 receptor and to compare tracer uptake to that of [18F]F-DPA targeting TSPO at the final imaging time point. TG and wild type (WT) mice underwent longitudinal in vivo PET imaging using [11C]SMW139 at 5, 8, 11, and 14 months, followed by [18F]F-DPA PET scan only at 14 months. In vivo imaging results were verified by ex vivo brain autoradiography, immunohistochemical staining, and analysis of [11C]SMW139 unmetabolized fraction in TG and WT mice. RESULTS: Longitudinal change in [11C]SMW139 standardized uptake values (SUVs) showed no statistically significant increase in the neocortex and hippocampus of TG or WT mice, which was consistent with findings from ex vivo brain autoradiography. Significantly higher [18F]F-DPA SUVs were observed in brain regions of TG compared to WT mice. Quantified P2X7-positive staining in the cortex and thalamus of TG mice showed a minor increase in receptor expression with ageing, while TSPO-positive staining in the same regions showed a more robust increase in expression in TG mice as they aged. [11C]SMW139 was rapidly metabolized in mice, with 33% of unmetabolized fraction in plasma and 29% in brain homogenates 30 min after injection. CONCLUSIONS: [11C]SMW139, which has a lower affinity for the rodent P2X7 receptor than the human version of the receptor, was unable to image the low expression of P2X7 receptor in the APP/PS1-21 mouse model. Additionally, the rapid metabolism of [11C]SMW139 in mice and the presence of several brain-penetrating radiometabolites significantly impacted the analysis of in vivo PET signal of the tracer. Finally, [18F]F-DPA targeting TSPO was more suitable for imaging reactive glia and neuroinflammatory processes in the APP/PS1-21 mouse model, based on the findings presented in this study and previous studies with this mouse model.

3.
Eur J Neurol ; 30(8): 2365-2375, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154404

RESUMO

BACKGROUND AND PURPOSE: The aim was to study brain innate immune cell activation in teriflunomide-treated patients with relapsing-remitting multiple sclerosis. METHODS: Imaging with 18-kDa translocator protein positron emission tomography (TSPO-PET) using the [11 C]PK11195 radioligand was employed to assess microglial activity in the white matter, thalamus and areas surrounding chronic white matter lesions in 12 patients with relapsing-remitting multiple sclerosis who had been treated with teriflunomide for at least 6 months before inclusion. Magnetic resonance imaging (MRI) was used to measure lesion load and brain volume, and quantitative susceptibility mapping (QSM) was used to detect iron rim lesions. These evaluations were repeated after 1 year of inclusion. Twelve age- and gender-matched healthy control subjects were imaged for comparison. RESULTS: Half of the patients had iron rim lesions. In TSPO-PET, the proportion of active voxels indicating innate immune cell activation was slightly greater amongst patients compared with healthy individuals (7.7% vs. 5.4%, p = 0.033). The mean distribution volume ratio of [11 C]PK11195 was not significantly different in the normal-appearing white matter or thalamus amongst patients versus controls. Amongst the treated patients, no significant alteration was observed in positron emission tomography distribution volume ratio, the proportion of active voxels, the number of iron-rim-positive lesions, lesion load or brain volume during follow-up. CONCLUSIONS: Compared to controls, treated patients exhibited modest signs of diffuse innate immune cell activity, which was unaltered during follow-up. Lesion-associated smoldering inflammation was negligible at both timepoints. To our knowledge, this is the first study applying both TSPO-PET and QSM-MRI to longitudinally evaluate smoldering inflammation.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Substância Branca , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Microglia/metabolismo , Microglia/patologia , Encéfalo/patologia , Substância Branca/patologia , Imageamento por Ressonância Magnética , Inflamação/patologia , Ferro/metabolismo , Receptores de GABA/metabolismo
4.
J Cereb Blood Flow Metab ; 43(2): 258-268, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163685

RESUMO

The membrane-based purinergic 7 receptor (P2X7R) is expressed on activated microglia and the target of the radioligand [11C]SMW139 for in vivo assessment of neuroinflammation. This study investigated the contribution of radiolabelled metabolites which potentially affect its quantification. Ex vivo high-performance liquid chromatography with a radio detector (radioHPLC) was used to evaluate the parent and radiometabolite fractions of [11C]SMW139 in the brain and plasma of eleven mice. Twelve healthy humans underwent 90-min [11C]SMW139 brain PET with arterial blood sampling and radiometabolite analysis. The volume of distribution was estimated by using one- and two- tissue compartment (TCM) modeling with single (VT) and dual (VTp) input functions. RadioHPLC showed three major groups of radiometabolite peaks with increasing concentrations in the plasma of all mice and humans. Two radiometabolite peaks were also visible in mice brain homogenates and therefore considered for dual input modeling in humans. 2TCM with single input function provided VT estimates with a wide range (0.10-10.74) and high coefficient of variation (COV: 159.9%), whereas dual input function model showed a narrow range of VTp estimates (0.04-0.24; COV: 33.3%). In conclusion, compartment modeling with correction for brain-penetrant radiometabolites improves the in vivo quantification of [11C]SMW139 binding to P2X7R in the human brain.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Humanos , Camundongos , Animais , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Algoritmos
5.
J Pharm Biomed Anal ; 219: 114860, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35738120

RESUMO

Radiometabolites of PET tracers interfere with imaging and need to be taken into account when modeling PET data. Various tracer and radiometabolite characteristics affect the uptake rate into tissue. In this study, we investigated two such factors, lipophilicity and protein-free fraction. A novel rapid method was developed using thin-layer chromatography with digital autoradiography (radioTLC) and ultrafiltration for analyzing the protein-free fractions of an exemplar PET tracer, [11C]SMW139 (fP, free parent tracer over all radioactivity), and its radiometabolites (fM, free radiometabolites over all radioactivity). Detailed understanding of the uptake of radiometabolites into extravascular cells requires analyzing fM, which has not previously been performed for PET tracers. Mice were injected with [11C]SMW139, and time-activity curves from plasma and brain coupled with the parent fraction and free fraction data were analyzed to demonstrate the true levels of protein-free and protein-bound [11C]SMW139 and its radiometabolites in plasma. The ultrafiltration method included separate membrane correction factors for the parent tracer and its radiometabolites for analysis of unbiased fP and fM. Metabolism of [11C]SMW139 was rapid, and after 45 min, the parent fraction was 0.33 in plasma and 0.28 in brain. Ultrafiltration membrane correction had a significant effect on the fP but not the fM. From 10-45 min, the fP decreased from 0.032 to 0.007, while fM remained between 0.52 and 0.35. The much higher fM in plasma could explain why the less lipophilic radiometabolites enter the brain efficiently. This detailed understanding of fP and fM from rodents can be used in translational studies to explain the behavior of the tracer in humans. Similar parent fraction and plasma protein binding methods can be used for human in vivo analysis.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Proteínas Sanguíneas/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...